
FoodDex Documentation
Developer: Jason Pon
Contact: japon@ucsd.edu

Demo Link: https://fooddex-3afc7.firebaseapp.com/hw5/wireframes/login.html

[Build #4 of FoodDex. Your Dex]

Code Architecture

FoodDex was created utilizing HTML, vanilla Cascading Style Sheets (CSS) and
vanilla Javascript. The decisions to commit to these tools came during the development
process. In build #3 of the web application (before the current “final” build build #5), we
experimented with Framework and Vanilla CSS, ultimately committing 4 hours and 14
hours respectively to build a workable styled application. The Framework-styled
(BootStrap) website was ultimately bloated with unnecessary libraries that were unused,
the structure of page elements were unorganized, and there were too many number of
things that needed to be fixed. Ultimately, the greater amount of polish for the vanilla
version and the amount of learning needed to correct and make the BootStrap version
efficient led us to proceed with vanilla CSS.

In terms of Javascript choice (VueJS, jQuery, VanillaJS), our team decided on
VanillaJS. In build #4 of FoodDex, a prototyping phase, we ultimately did not have the
chance to prototype different Javascript frameworks. During that phase we
experimented with VanillaJS and partially created working implementations of CRUD
(Create, Read, Update, Delete) operations. The different ways other javascript libraries
worked (e.g. $ selectors for jQuery) required additional learning that was beyond the
scope of the team’s capabilities at the time. For the current build (#5), we proceeded

mailto:japon@ucsd.edu
https://fooddex-3afc7.firebaseapp.com/hw5/wireframes/login.html

implementation with vanilla Javascript. Of particular note during development is that
some operations might have been easier to implement with the use of other Javascript
frameworks, but so far, there haven’t been any hurdles in not being able to implement a
specific feature with VanillaJS.

In regards to javascript organization, all scripts are currently inlined within the

HTML page the script is used on. Our team experimented with referencing scripts as a
separate javascript (.js) file, but we’ve had no success in making this implementation
work, as moving the scripts to an external file broke the implementation of working
functions and we have no idea how to make it workable. There were other factors to
consider including the added time/processing it would take for the network/system to
reference the external file that would make an external reference file undesirable. Also,
most scripts had function implementations that were specific to the page they are
located in, so there are few cases where code are duplicated and the development
time/effort to make functions modular was not worth investing in.

For CSS organization, most elements are styled uniquely and so are done inline.

We have an external stylesheet for repeating styles for similar elements, and in some
cases, override/overload styles referenced in the stylesheet.

General organization of code

<head>
 Reference stylesheet, libraries
</head>
<body>
 HTML elements, and styling
 Javascript scripts
</body>

Organization of Files

Current File Structure

 Files are current organized by content. HTML pages have their own directory,
image content have their own directory and commonly referenced files like stylesheets
are located at the root directory.

Concerns, Limitations, Caveats, TODOs

Every effort has been made to prioritize as many working features, fixes, and
improvements to FoodDex in the limited amount of time remaining. Unfortunately, there
is still a list of tons of improvements and implementations to work on.

Among the chief concerns right now is security and speed. Perhaps the web
application is not secure enough if text fields accept malicious input, if implementation
details are currently exposed, etc. Security hasn’t been a big focus thus far so it may be
important to consider in the future. In terms of speed, in the implementation of certain
features, our programmers implemented features with algorithms they came up with at

the time, involving loops and other resource intensive structures. In the future, it may be
better to research if better algorithms could be used to provide the same implementation
more efficiently.

For the limitations of FoodDex, it is currently not built to scale. It’s database and
implementation currently isn’t setup to support multiple users. We focused on making
the web application work for a single user before expanding our scope of users.

TODOs

 Improve the visual design of the website and make it responsive for different
devices

 Create more image assets for different foods

 More checks on user input

 Improve security of website: hide implementation details

 Expand scale of web application to support multi-users

 Finish initially planned & in-progress features.

